Convergence and optimal control problems of nonlinear evolution equations governed by time-dependent operator
نویسنده
چکیده
We study an abstract nonlinear evolution equation governed by time-dependent operator of subdi erential type in a real Hilbert space. In this paper we discuss the convergence of solutions to our evolution equations. Also, we investigate the optimal control problems of nonlinear evolution equations. Moreover, we apply our abstract results to a quasilinear parabolic PDE with a mixed boundary condition.
منابع مشابه
An optimal analytical method for nonlinear boundary value problems based on method of variation of parameter
In this paper, the authors present a modified convergent analytic algorithm for the solution of nonlinear boundary value problems by means of a variable parameter method and briefly, the method is called optimal variable parameter method. This method, based on the embedding of a parameter and an auxiliary operator, provides a computational advantage for the convergence of the approximate soluti...
متن کاملA balanced truncation-based strategy for optimal control of evolution problems
In this paper we present a balanced truncation based strategy for the numerical solution of optimal control problems governed by nonlinear evolution partial differential equations. The idea consists in utilizing a balanced truncation model reduction method for the efficient solution of the semidiscretized adjoint system, while the nonlinear state equations are fully solved. Our strategy is anal...
متن کاملA Numerical Approach for Fractional Optimal Control Problems by Using Ritz Approximation
In this article, Ritz approximation have been employed to obtain the numerical solutions of a class of the fractional optimal control problems based on the Caputo fractional derivative. Using polynomial basis functions, we obtain a system of nonlinear algebraic equations. This nonlinear system of equation is solved and the coefficients of basis polynomial are derived. The convergence of the num...
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملStiffly accurate Runge-Kutta methods for nonlinear evolution problems governed by a monotone operator
Stiffly accurate implicit Runge–Kutta methods are studied for the time discretisation of nonlinear first-order evolution equations. The equation is supposed to be governed by a time-dependent hemicontinuous operator that is (up to a shift) monotone and coercive, and fulfills a certain growth condition. It is proven that the piecewise constant as well as the piecewise linear interpolant of the t...
متن کامل